2 research outputs found

    Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic

    Get PDF
    This paper considers a ridesharing problem on how to match riders to drivers and how to choose the best routes for vehicles. Unlike the others in the literature, we are concerned with the maximization of the average loading ratio of the entire system. Moreover, we develop a flow-dependent version of the model to characterize the impact of pick-up and drop-off congestion. In another extended model we take into account the riders’ individual evaluation on different transportation modes. Due to the large size of the resulting models, we develop a large neighbourhood search algorithm and demonstrate its efficiency

    A vehicle routing problem with distribution uncertainty in deadlines

    No full text
    This article considers a stochastic vehicle routing problem with probability constraints. The probability that customers are served before their (uncertain) deadlines must be higher than a pre-specified target. It is unrealistic to expect that the perfect knowledge on the probability distributions of deadlines is always available. To this end, we propose a distributionally robust optimisation framework to study worst bounds of the problem, which exploits the moment information of the historical observations. This framework includes two steps. We first use Conditional Value-at-Risk (CVaR) as a risk approximation to the probability of missing customer deadlines. The resulting nonlinear model is then transformed into a semi-infinite mixed integer program, using the dual form of the CVaR approximation. A sample approximation approach is then used to address the computational challenges. As the standard CVaR approximation to probability constraints is rather conservative, we suggest a relaxation to the approximation and develop an iterative algorithm to find the right value of the parameter that is introduced to the relaxed CVaR constraints. The extensive numerical experiments show that the routing policies developed by the proposed solution framework are robust and able to achieve the required target, regardless of deadline distributions
    corecore